1. Introduction to DS 2. Installing python 3. Python Basics 4. Python libraries 5. Type of data 6. Mean mode and median 7. Variation and standard deviation 8. Probability 9. Conditional probability 10. Bayes theory 11. Linear regression 12. Polinomial regression 13. K-Means 14. Logistic regression 15. Poision regression 16. Decision tree 17. Random forest 18. Chi square test 19.Supervised Vs.Unsupervised learning 20. K-Means clustering 21. KNN- Concept 22. Confusion Matrix 23. K-Fold cross validation 24. Handling unbalanced data 25. TF/IDF 26. A/B Testing 27. Deep Learning introduction 28. Tensorflow and Keras library 29. RNN Network in deep learning 30. CNN Network in deep learning 31.Hyperparameter tuning