Course Content 1.Python 2.Pandas 3.Numpy 4.Matplotlib & Seaborn Mini Project 5.Machine Learning Introduction Regression Mini Project 6.Classification Algorithms Logistic Regression KNN and SVM Naïve Bayes Decision Tree Random Forest Xgboost Cross validation Consfusion Matrix Normalization Unsupervised Learning KMeans clustering 7.Artificial Intelligence Perceptron ANN CNN RNN Mini Project Send a Comment Cancel replyYour email address will not be published. Save my name, email, and website in this browser for the next time I comment. Apply to course now Data Science (2 votes, average: 1.00 out of 5)Loading... Price: FreeCertificates: NoStudents: 0Lesson: 0